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INTRODUCTION

The establishment of existence of a minimizing solution in the calculus of
variations has been recognized as a challenging problem. For many problems
which satisfy reasonable hypotheses, a minimizing solution can be shown not
to exist, In addition, for some problems which have a minimizing solution,
8 sequence of approximations that approgches the minimum solution pointwise

need not have a limit which is minimizing.

In 1937, these considerations resulted in the idea presented by L. C. Young
(Reference 1) for modifying the problem to obtain a solution in a larger
class of functions called generalized curves. This idea was extended by
McShane (References 2, 3 and b4), who obtained an existence theorem for the
problem of Bolza, and arrived at the conditions necessary for a generalized
curve to be minimizing. In 1949, Hestenes (Reference 5) translated known
results on necessary and sufficient conditions into controls language. This
study included the Hamiltonian formulation which later became known as the

maximum principle.

Existence for the linear time-optimal control problem with constant coeffi-
cients was treated by Bellman, Glicksberg, and Gross (Reference 6); the case
of time-varying coefficients was treated by La Salle (References T and 8),
Gamkrelidze (Reference 9), and Neustadt (Reference 10). Reid (Reference 11)

treated the linear case for control functions of minimum norm. Lee and



Marcus (Reference 12) and Roxin (Reference 13) obtained existence theorems

for the non-linear time-optimal problem under restrictive hypotheses.

In Russia, Filippov (Reference 1l4) treated the existence problem somewhat
differently and observed that, for a special case in which a minimum does

not exist, a minimizing sequence does exist, slthough the limit is not a
solution. Filippov called such limits sliding states. Gamkrelidze (Reference
15), following Filippov, obtained an existence theorem and some necessary
conditions for sliding states. Independently, Warge (References 16, 17 and
18), by a construction quite like that of Filippov, obtained similar theorems
for what he celled a relexed problem. He showed that under certain hypotheses

his relaxed solutions are generalized curves.

Most of the above pepers on the subject of existence are non-constructive and
use such tools as fixed point theorems and compactness of point sets. Such
results are interesting and important, but frequently the hypotheses of a

given theorem are difficult to verify.

The purpose of this research was to investigate constructive type existence
theorems for optimal control problems with the expectation that the results
obtained would shed light on some of the inherent difficulties encountered
in computation. A constructive existence theorem was obtained for an elemen-

tary control problem; however, conditions on the problem which assure



that the underlying hypothesis is satisfied are not readily obtainable. Two
related results were obtained which are of interest in their own right. These
are the approximation theorems contained in Section 1 and a computational

algorithm contained in Section 3.

In Section 1, several results of a topological nature are presented which
relate to approximations of functions. These results are utilized in
Section 2 and Section 3 to study sequences of functions for solving approxi-
mate problems. An algorithm is developed in Section 3 which is expected to
be useful in speeding up the convergence of gradient computational methods.
The algorithm depends upon replacing the original problem by a new problem

which is easier to solve.



1. SOME APPROXIMATION AND DENSITY THEOREMS#*

The following sequence of lemmas and theorems are useful in the development of

Section 2 as well as being of interest in their own right.

Lemmal,1, If H is a locally convex separable space, let D be an open

connected subset of H and {ai} a sequence of points in D that is

dense in D. Then there exists an open subset U < D such that

i) {ai} U

ii) U is homeomorphic to H

iii) D - U is nowhere dense in D.

k
We enclose a; in a small ball in D. If 9 ay has been enclosed in a set Ck
k
homeomorphic to the unit ball in H so that 9 ai<: Int C , let Pk+l be a
polygonal path from & 41 to a symmetric ball in Ck' We enclose Ck in the
. 2 . 1t 3 114
interior of a larger copy Ck+l of the unit ball by “swelling Pk+l and Ck
so that Ck+l - Ck is homeomorphic to the closed region between two concentric
oo

spheres. There is then a homeomorphism between H and U = ? Ck' So the lemma

follows.

From now on H denotes a Hilbert space.

% This section was co-authored by P. H. Doyle, Mathematics Department, Michigan
State University and will appear under the same title in "Proceedings of the

International Symposium on Topology and Its Applications."



Lerma 1.2, Let A and B be countable dense subsets of H. Then there

is & homeomorphism h of M onto Il corresponding to any preassigned

€ > o0 such that
1. h{a) =B

2. p(x,h(x)) < €

The argument is just that of (Reference 19) pp. LL-U6 except that in plecing

A and B similarly the condition 2 above is forced in the induction.

Lemin 1.3. If U is the interior of the unit ball in h, let A and

B be counteble dense subsets .of U and € > o, ihen there exists a

o ey vt

homeomorphism h of W onto l such that

1. h(A) =B
2. nlEf-vu=1
3. plx,h(x)) < €.
Let b, : U~—=> I be the homeomorphism given by hl(x) = E:%;T » while h, is the

homeomorphismof Lemma 1.2,carrying h,(A) onto h (B), with condition 2) satisfied

for €/3. Define h of H onto H by h]U mhl'lhzhl and h is the identity otherwise.

Note that

X 4 fo‘(‘yl - =)
l~lx{$434g§$l§wxr)]

x - h(x) = x -



vhere Gx is a vector depending on x with the property that ]6x] < €/3. From
this equation we have that
a) lim(x - h(x)) =0
|x] +1

b)  |x - n(x)| < e, all x € U.

Here a) establishes the continuity of h on U - U, and b) shows condition 2

is satisfied.

Corollary. Let M be a topological n-manifold (Reference 12), te M is

an open set while A and B are countable dense subsets of U. Then there exists a

homeomorphism h gg_Mn onto M" such that h(A) = B, thn - U is the identity

map, and p(x,h(x)) < € for € > o.

If U, is a component of U, then by construction in Reference 19 , U, = E® U R vhere
E” is topologically En’ R is a closed subset of U, of dimension at most n-1
and (A U B) N U, <= E®. In case n = 1, R=¢ and E" = B} = U,, so that theorem

is true for n = 1. For n > 1, we note that E® is & strictly increasing union

oo

of closed, flat n-cells U Bi such that B

- --Bi is the product of a sphere and

i+l

an interval vhile for each i, the boundary of B,, Bd B, n (AU B)=g.

i’

Each closed annular region Bi+l -'§; can be split into two closed n-cells so

that neither meets A U B on its boundary and each n-cell meets the other only

on its boundary. By the preceeding lemms, there exists a homeomorphiSm of



Ai+1 = Bi+l - Bi onto itself that is the identity on its boundary, carries

AN Ai+l onto B 11 Ai+l and moves no point more than Ei say. Thus there exists

a homeomorphism of U, onto U, that can be extended to one on M" by the iden-

tity map. Hence the h of the above corollary exists.

Theorem 1.1. If U is an open subset of a Hilbert space H while

A and B are dense countable sets in U then there exists a homeo~

morphism h of H onto H such that for € > o,

i) p(x,h(x)) < ¢
ii) h(A) = B

iii) h|H - U =1.

If U, is a component of U then bylemma 1.1,U, 0 (A U B) lies in an open copy

of Hilbert space in U1 and the argument proceeds as in the preceeding Corollary.

Theorem 1.2. Let f be a continuous function from a Hilbert space

H, into snother H, while A< H, is a dense set in H, . Then given

any open set U in H, that contains £ 1(0), there is_an e-approximation

fl to f such that

1)  £7'(o) N A is dense in £;'(o)

ii) £ |8 -U=rf|E -U.



In contrast to Theorem 1.2, we prove an approximation theorem for a rather

general domain. 1/2 E! is the closed half-line.

Theorem 1.3. Let X be a perfectly normal space and D X is a

dense subset. If f : X —> 1/2 E! is a map there exists a map
g : X ——>1/2 E! such that

. -1 -1

i) g (o) nD=g (o)

ii) p(f,g) < e.

If f”(o) ND= f—l(o) there is nothing to prove. Otherwise, consider
f-l([o,gﬂ) >f o). Let K = f-l([o,%]). The closed set C = f—l([o,gﬁ) is
carried by f into [0,31- But by (Reference 21, p.148), there is a map f, of

C to [o,-;i] such that f; (o) = K and f:‘(-g-)= f“(%), define g : X —> 1/2 E! vy

g | f_l[o,-g-] = f

i
o

g | f’l[—g‘,w



2. AN ELEMENTARY CONSTRUCTIVE EXISTENCE THEOREM

Let I be a lower semi-continuous (lsec) function from LI: [a,b], the set of
m-dimensional square integrable functions on the interval {a,b] to the real
line, and let K be a compact subset of E", Let U be a closed and bounded
subset of L’f [a,b] with the property that for u in WU, u(t) is in K for t in

[a,b]. We will further assume that U is equal to the closure of its interior

symbolically
(1) w=u.
We consider the problem

min I(u)
(2) uell

Let Sn be the set of step functions in W with discontinuities at k(b-—a)/2n,
k=1, **+,2"-1, Then Sk o SJ for k>j and S=USn is dense in U as a consequence
of (1). We can replace (1) by the condition that S is dense in U. The

approximate problem

(3) min I(u)
ues
n

has a solution u for each n since on Sn’ I is & lsc function of a finite

number of variables and K is compact. Clearly

I(u ) < I(uJ), n>jJ



Again, because U is bounded the sequence I(un) has a limit. The function
u,(t) = inf u, (t)
belongs to U and has the property that

I(u,) < inf I (u)
ues

Hence uy, is a solution of (2) and we have shown

o [ ' . £ r)
Lemma 2.1. There exists a function u, _:gl_'lL satisfying

I(uo) = min I (u)

uell

in the sense that

The seqguence u, determined by (3) approximates u,

lim I(un) = I(uo) .

In the proof of Lemma 2,1, we have used the fact that U has a dense subset S.
To extend this result, let V be a closed and bounded subset of WU which need

not intersect S. We consider the problem

() min I(u) .
ueV’

We will further assume that I has the property that if un and vn are sequences

in U for which

5e) [u, = v Il >0

*
inf applying to each comvonent.

10



then =
(5b) lI(un) - v )| 0

vhere ||*

| denotes the norm in LI: [a,b].

Let 'U.k be a nested sequence of closed and bounded sets, which satisfy (1) and

such that

'V'=n'U.k

Each of the problems

(6) min I(u)

ue’ﬂk

has & solution vy by Lemme 2.1 and

I{w,) z_I(wJ) k>4

since ka: 113 .

Hence the sequence I(wk) hes & limit. For each k let vy be a function in V

determined by

llvk - k‘l = min‘lv - Wkll
veV

11



Then since Uk +V,

”wk - vk!l*os
hence by (5)
]I(wk) - 1(vk)l >0 .
Let
vo(t) = inf vk(t)

Then clearly v €V and

lim I(wk) = I(v,) .

Further, v is a solution of (4) since if there was a veV such that
1(v) < 1(v,)

then for k sufficiently large
I(wk) > I(v) .

Since un >V, this would contradict the fact that w, is a solution of (6).

Hence we have proved

s : : . . .
Lemma 2.2. There exists & function v, LQVie}Eglng

I(vo) = min I(v) .
veV’

12



The sequence wk determined by (6) approximates v, in the sense that

lim I(wk) = I(vo) .

A}

We can now apply these results to the linear isoperimetric optimal control

problem, Let

b
(7) 3y = J r,(t,u(t))at  o=0, 1, =+, p.
a

We consider the problem of

(8a) Jo(u) = min

subject to

(Bb) Ja(u) = 0 o = l’ eoe, p'
Ja(u) <0 o=p'+1l, ¢, p,

where the functions u(t) are in a subset ¥ of Ln; [a,b] with values in a

compact set K. Let
(9) I(u) = J,(u)
W= {u(t)e ¥ : u satisfies (8b)}

Clearly W is a closed subset of the closed and bounded set V. Suppose that

W satisfies (1). Then we can take U = W and the approximation problem (4)

becomes

13



(10a)

2By (P
min Z £o(t,u)at
ussn i=0 ai
subject to
2Py (P4
) £,(touddt =0  a=1, e, p'
i=0
84
2% (P4
(10b) ) f,(t,u)dt <0 a=p'+1, e, p
1=0
a,
1
where
i(b-a)
& =Ta¥ o
by =84, i=0, eo0, 281,

Theorem 2.1. Let W satisfy (1). There exists a function u, in W

satisfying

Jo(“o) = min J (u)

14



and

1
o
Q

#

Ja(uﬂ) - l’ 000, p.'

A

[e]

Q
i

I (u,) < =p'+ 1, ***, p.

The seguence un determined by (10) sapproximately converges to u, in the

sense that
lim Jo(u ) = J,(u,)

and
Joc(un) =0 o=1l, ¢, p'

J'a(un) _<__ 0 o = l’ eee. D

This is an immediate consequence of Lemma 2.1.

In the event that W does not satisfy (1) there are two possibilities. We can
obtain the sequence of sets 'Lbn specified in Lemma 2.2 either by modifying the
functions f, (0 = 1, ***, p) or by modifying the constraints (8b). The first
alternative is essured of success in that by Theorem 1.3 of Section 1, there

exists a sequence of functions rn(t,u-) such that setting

b
(11) Jm(u) = fna(t,u('b))dt
a
Replacing (7) by (11) and setting
(22) u’n" {u(t)e ¥ : u satisfies (8b)}

15



the sets'uh satisfy the hypotheses of Lemma 2.2. However, Theorem l.l1 only
assures the existence of the sequence. The construction is not clear and is
currently under investigation. Likewise, Theorem 1.3 assures that there
exists a sequence Jna(u) obtained by modifying the functions Ja(u) directly
with the resulting sets Uh defined as in (12) also satisfying the conditions
of Lemma 2.2. A method which suggests itself is to choose a sequence of

vectors En = (Eé, °",E§), Ei >0, 3 =1, ***, p, converging to the zero

vector and consider the sequence of problems with (8b) replaced by

(13) Ja(u) ifg' o =1, *ss, p'
Safw) <E a=1, e, p
Ja(u) f'Eg a=7p' +1, se+, p.

The question of when the sets'uh defined by
uh = {u(t)e ¥ : u(t) satisfies (13)}
satisfies (1) is also under investigation.
A problem which can be cast in the form (8) is the linear optimal control
problem. Let

(14) x = Alt)x + g(t,u) a<t<hd

x(a) = a, x(b) = B

16



be a system of differential equations in vector form where x is a g-dimensional
vector. For convenience, we assume that A(t) and g(t,u) are continuous, We
wish to minimize (8a) subject to (14) and a condition on the controls u(t).

Let ®(t) be the fundamental solution matrix of
x = Alt)x .

Then (14) can be rewritten as

t
x(t) = ¢(t)a + J o(t)0" (s) gle,u)as
a

and in particular at t = b

b
(15) [ ®(b)8"(s)g(s,u)ds + d(b)a -~ B = 0
a

Then setting fﬁ = ath component of the veetor

B(b)0™} (s)g(s,u) + ARI2 =8

bP~-a

we see that (14) can be written as

b
j £,(t,u)dt = 0 a=1, ¢*%, q .
a

A case of particular interest is that where

(16) g(t,u) = B(t)u

17



where B(t) is an q¢ x m matrix and the controls u(t) are required to satisfy
(17) fu(t)| <1 .

Let U be the set of controls satisfying (15) and (17) with g as in (16).
Let u(t) and v(t) be inMU, ¢ >0, d >0 and ¢ + d = 1. Clearly cu(t) + dv(t)

satisfies (17). Also

b
! o(1)0" *(s)B(s) (cu(s) + av(s))ds + &(b)a - B

a
- b
=c #(b)®™ ' (s)B(s)uls)ds + #(b)a - 8]
L i g
~ b
+ d (b)) (s)B(s)v(s)ds + ¢(b)a - B:} =0
-da

so U is convex. Hence if U has a non-empty interior, it satisfies (1). 1If
the dimension m of u is one and more than one control satisfying (17) also

satisfies (15), then the conditions of Lemma 2,1 are satisfied.

18



3. A COMPUTATIONAL ALGORITHM

In attempting to extend the ideas in Section 2 to non-linear control problems,
& variety of transformations were investigated. Although none have yet
proved completely successful for this purpose, one appears to have the
possibility of speeding the convergence of gradient-type computational
methods. This transformation, due to M., R. Hestenes (Reference 22), was used

by him to facilitate proofs of necessary conditions.

The motivation for such transformations is simple: a solution to the given
problem is also a solution of many other problems and among these, one is

chosen vhich is computationally simpler.

Buppose we are given functions fi(t,x,u), i=0, *°*, q defined on a region

R in(1 +q + m)-dimensional euclidean space, We desire to minimize

(1) b
I(x) = £,(t,x,u)dt
a
subject to
(2a) ;‘i - fi(toxpu)o agt<p;i=1, °%% Qs
(2v) x(a) = a, x(b) =8 .

19



To incorporate additional constraints, it may also be required that
(t,x(t),u(t)) lie in a subset R, of R for a < t < b and (x(t),u(t)) a

solution of (2).

In many computational schemes, the first step is to linearize the problem

*
by replacing (1) and (2a) by

b
- J k
(1) I'(x) = J £ oxd 6x° + £_ 5 Su
a
and
. i _ 3 K
(2'a) 8x* = £l SxY + £,k Su

J .k

where fixJ’ fiuk are partial derivatives of f, with respect to xY, u

i
respectively.

Here it would be convenient for computation if the coefficients of GxJ
vanished. One cannot hope in general to modify the problem so that this occurs

in the large, but it can be done along any given solution to (2).

Suppose that (xn(t), uh(t)) is a solution to (2). We designate this solution
by the symbol xn and will perform a transformation so that along xn, the Gxi

coefficients vanish. To this end, let

* Repeated indices are summed in all equations.

20



(3a) L (t) = £ (t,xn(t),un(t)) a= 0,000, q

(3v) ALy (6) = g5 (6x ()0, (8)), 1,0 = 1,000,
and
(3¢) By (8) = 2y (t,x (6),u (8)).
Let
b
() J,(x) = J [fu(t.x.u) - -a%(rixi)]dt
a

vhere r is a q-dimensional vector function to be chosen. For any r,

(5) Jo(x) = 1(x) - r'(0)8? + rl(aal

and since only a constant has been added to I, a minimum of I also is a

minimum of J 0* Now we set

(6) F,(t,x,u) = £,(t,x,u) - rifi(t,x,u) - it
Then along x, ve have that

1.4 ,
(1 Foxd (8a%y(8),u,(8)) = B, (8) = rlal, (8) - 70

21



Then (7) vanishes if r(t) satisfies the differential equation

(8) ™+ riA.rilJ = an (t), r(a) =o0.

In this event
(9) 3(x ) = I(x ) - r'(b)g!

and in particular if X minimizes I, it minimizes Jo'

Next, let Z{(t) be the q x q - matrix solution of

(10) Z.. +Z.. A

i3 ¥ %n Bay =0 2y, (a) = 8;

J

where GiJ is the delta function. Let

—-— . J —4 LR = ]
(11) Fi(t,x,u) = Zijfj + Zijx . i, 3=1, s @ o

and

Then setting

(12) Ji(x) =G, + Fi(t,x,u)dt i

l, .'.’ q

22



for every solution (x(t), u(t)) of (2a), we have
(13) 3y(x) = 2., (0)(x)(b) - 87) - (M) - ab).

Hence since Z(b) is non-singular, we have that any solution of (2a) with

x(a) = o0 satisfies x(b) = B if and only if
(1k) Ji(X) = 0 i=1, ¢°¢, q
Further, Fi has the property that

k

(15) iy (6ox (6),u (8)) = 2, Ay + 2,

k k

= Zik An" - Zik AnJ = 0, i’ J.l”.., q

by (10).

Hence we can replace the original problem by the transformed problem

Jo(x) = min

Ji(x) = 0 im]l, o0e, g
The suggested computational algorithm is then as follows:

1)  Choose any solution (x, (t), u, (¢)) of (2).
11) Compute the matrices A, and B, using (3) withn = 1,
111) Compute r(t) using (8).

23



iv) Compute the solution Z of (10).
v) Determine J,(x), J,(x) °*-, Jq(x) using (4) and (12).
vi) Minimize J,(x) subject to Ji(x) =0,4i=1, ***, q to obtain
a new solution (x,(t), u,(t)) using any computational technique

which profits from the fact that

pri (t) x‘(t),ul(t)) = Q p = O’oo.’q; i = 1,"',q.

vii) Repeat ii) through vi) with n = 2, etc.

Although additional computation is required, both (8) and (10) are linear
equations with fixed initial conditions. It is e#pected that the additional
time for this computation will be more than made up in the simplification of
the computation in step vi) of the algorithm. The extension to variable end
point problems is quite straight forward and will not be carried out here.
Further details, including modification of problems with additional

constraints, may be found in Chapter 6 of (Reference 22).

24



h, SUGGESTED FURTHER RESEARCH

The approximation theorems contained in Section 1 are existence theorems.

In a sense, the problem of construction of optimal controls has been trans-
ferred to the somevwhat more direct problem of construction of the approxi-
mations presented in Theorems 1.2 and 1.3, Construction of these approxima-

tions is interesting and should have important applications.

The question of what conditions in the problem assure that the set U in

Section 2 has the property
W= (1)

remains open. This fact causes difficulty in studying the linear case and
certainly even more so in the non-linear case. Without an answer to the
above question, constructive existence theorems with easily verifiable hypo-
theses appear very difficult to obtain. Thus a large part of the future

research effort should be devoted to a deeper study of this problem,
Lastly, the extension of the results of Section 2 to the non-linear problem

remains open. Transformﬁtions of the type considered in Section 3 seem to

offer possibilities of application.
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